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We study a toy model for electrolytic soap films, the two-dimensional two-
component plasma. This model is exactly solvable for a special value of the
coulombic coupling constant bq2=2. This allows us to compute the disjoining
pressure of a film and to study its stability. We found that the Coulomb
interaction plays an important role in this stability. Also the adhesivity that
measures the attraction of soap anions to the boundaries is very important. For
large adhesivity the film is stable, whereas for small adhesivity a collapse could
occur. We also study the density and correlations in the film. The charge density
near the boundary shows a double layered profile. We show that the charge
correlations verify a certain number of sum rules.

KEY WORDS: Coulomb systems; soap films; disjoining pressure; charge
density; correlations.

1. INTRODUCTION

The theory of exactly solvable models of Coulomb systems is a very
interesting subject. Besides their intrinsic mathematical interest, they have
several relations to other fields like condensed matter physics and quantum
field theory. They are also interesting because they can serve as basic
models for physical systems like electrolytes and plasmas, and provide an
exact solution of the statistical mechanics properties of these systems. For
instance, the problem of the electrical double layer around an electrode has
been successfully modeled by a solvable model of Coulomb system, the two-
dimensional two-component plasma. (1, 2) In this paper we propose and
study a model based on the two-dimensional two-component plasma that
mimics the properties of a soap film.



When soap molecules interact with water, they dissociate into anions
and cations, usually Na+. The soap anions have a hydrophilic negative
head and a neutral hydrophobic tail. Therefore, a fraction of the soap
molecules prefer to lie on the surface of the film with their tails outside the
water while the positive ions can remain throughout the film. Soap films
have a simple configuration and a well defined double layered structure,
hence constituting an excellent system to be modeled by a Coulomb gas in
a confined geometry. We are interested in the Coulomb interaction between
the ions (negative soap molecules and sodium cations) of the soap film and
how it contributes to the structure of the film.
A soap film, when subject to certain circumstances, may collapse to a

thickness smaller than visible light wave length and therefore it is seen black.
This well-known phenomenomwas studied in the experiments held by Belorgey
and Benattar(3) and later by Sentenac and Benattar(4) among others. In both
cases, salt was added to the soap solution. Depending on both the salt concen-
tration and temperature, if the external pressure was increased to a certain point
the soap film collapsed to either a Common Black Film (CBF) or to a Newton
Black Film (NBF). According to Belorgey and Benattar,(3) the CBF equilib-
rium thickness is due to a balance among attractive van der Waals forces and
repulsive forces between the layers. It is believed that short range repulsive
forces associated to the local structure of water are responsible for the NBF
stability. The sole difference between these two kinds of black films is the
thickness of the water layer. The CBF water layer is usually more than seven
times as thick as theNBFwater layer, however this difference can bemodulated
by the addition of salt and the surfactant concentration.(5) In spite of this, the
structure and forces involved in black films are not completely understood.
In 1997, the mean field Poisson–Boltzmann theory was applied by Dean

and Sentenac(6) to three-dimensional soap films. Within this framework, they
studied the disjoining pressure of the soap film for a wide range of salt concen-
trations and widths of the film. This disjoining pressure is the difference
between the external and internal pressures of the film. However, the pheno-
menon of collapse could not be explained by this mean field approach. Later
Dean et al.(7) used a functional integral technique to examine a solvable one-
dimensional Coulomb systemmodel for a soap film. They found the film charge
distribution and discussed the stability criterion for the one-dimensional film. In
that model they observed the collapse of the film, so one of their conclusions
was that electrostatic forces play an important role in this phenomenon.
In order to see what aspects are particular to the one-dimensional model

andwhat aspects aremore general we study here another type of solvablemodel
for a Coulomb system that can be applied to soap films. Working in the
framework of classical statistical mechanics, we will model the soap film as a
symmetric two-dimensional two-component plasma, i.e, a system of positive

496 Téllez and Merchán



and negative point particles of opposite charges ±q. The negative charges are
the soap molecules and the positive ones are the sodium cations. We are only
interested in the role that the Coulomb interaction plays in the structure of the
film so forces like van derWaals and others will not be considered.We will only
consider salt-free systems. Also, the internal structure of the particles will not be
regarded. Therefore our model can only mimic the behavior of a soap film
below the critical micelle concentration. With these restrictions, this model is
exactly solvable for a temperature given by q2/kBT=2. The attraction of the
anions to the interfaces will be accounted for by a short range attractive poten-
tial. We will study a film that has an infinite surface and a finite thickness. The
two dimensions to be considered lie on the breadth of the film, so this system is
invariant in one of the two dimensions, the other one corresponds to the thick-
ness of the film. We will study separately the inner and border regions of the
film. For this reason we will use two models. Each one is meant to be used to
analyze one of the two regions.
The outline of this paper is as follows. First, in Section 2 we will describe

the two models we employ. Then, there is brief explanation of the two-compo-
nent plasma theory and of the general method of solution. In Section 3, we use
the technique presented in Section 2 to find the pressure inside the film. We
analyse our result for the pressure and study the stability of the film. Afterward,
in Section 4, we will show how to compute the one-particle densities and the
truncated two-body densities and analyse our results. Various well-known sum
rules for the density and correlations are checked.
The main interest of this work is to study a solvable model of Coulomb

system that mimics some aspects of a soap film. Given the limitations of this
two-dimensional model, we can only compare qualitatively the structure and
behavior of this film to a real one.

2. THE MODEL AND METHOD OF RESOLUTION

In this section, we will present the two models we employed to study a
two-dimensional soap film. The two models have a lot in common. Both
are two dimensional systems of particles of charge ±q confined in a slab of
impenetrable walls. This aspect is modeled by an infinite external potential
outside the slab. The anions, negatively charged, tend to lie on the external
surface of the film. This is accounted for by an attractive short range
potential of different form in each model. The cations, on the other hand,
can lie anywhere in the film and this is represented by a constant potential.
This potential is the same in the two models.
In the first model (model I), the short range potential is modeled by a delta

function, while in model II, it is modeled by a step function. The first model will
be used to find the pressure and the densities in the inner region of the film
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whilst the secondmodel will be employed in the computation of the correlations
and the densities in the outer layers of the film.
In two dimensions, the Coulomb interaction potential of a charge sq

at a distance r from another charge sŒq is logarithmic, of the form v(r)=
−ssŒq2 ln(r/d), where d is an irrelevant length scale. The adimensional
coulombic coupling constant is C=bq2. For a system of point particles the
attraction between pairs of opposite sign will make the system unstable at
low temperatures. For this reason the partition function is not well defined
for C \ 2. While for C < 2, the system is stable against collapse.
Let us review the method described by Jancovici and Cornu (1) for the

two-component plasma. We start with the grand partition function

X= C
.

N=0

1
N!
lN0 F dr1 F dr2 · · ·F drN exp(−bH) (2.1)

where N is the number of particles and l0 is the constant fugacity related
to the kinetic energy and the chemical potential. We consider only neutral
configurations: the number of positive particles is equal to the number of
negative particles. An external potential can be described by a position
dependent fugacity l(ri)=l0 exp(−bUext(ri)). In order to avoid diver-
gences we start with a discretized model. The position vector r=(x, y) will
be represented by a complex number z=x+iy. The particles lie in two
interwoven sublattices U and V. The positives particles reside in the sub-
lattice U with coordinates ui, while the negatively charged particles reside
in the sublattice V with coordinates vi.
For a specific temperature, given by q2/kBT=2, this model is exactly

solvable. For a configuration with N positive particles and N negative par-
ticles, using a Cauchy identity, it can be shown that

exp 1 −b C
i < j
v(rij)2=d2N :5det

1
ui−vj
6
i, j=1,..., N

: 2 (2.2)

Using this fact, the grand partition function can be written as

X=det :
1 0 · · · dl(u1)

u1 −v1
dl(u1)
u1 −v2

· · ·

0 1 · · · dl(u2)
u2 −v1

dl(u2)
u2 −v2

· · ·

x x z · · · · · · · · ·
dl(v1)
v̄1 − ū1

dl(v1)
v̄1 − ū2

x 1 0 · · ·
dl(v2)
v̄2 − ū1

dl(v2)
v̄2 − ū2

x 0 1

x x x x

: (2.3)
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If each lattice site is characterized by a complex coordinate z and by a
vector which is (1, 0) for the positive particles and (0, 1) for the negative
particles then the grand potential can be expressed in the following simpli-
fied form

X=det 51+1l+(r) 0
0 l−(r)
21 0 d

z−zŒ
d
z̄− z̄ Œ 0
26 (2.4)

with ls the fugacity for particles of sign s.
In the continuum limit where the lattice spacing goes to zero (ignoring

divergences for the time being) by using the identity

“

“z
1
z̄− z̄ Œ

=
“

“z̄
1
z−zŒ

=pd(r− rŒ) (2.5)

it can be shown that

X=det rR 0 2“z
2“z̄ 0
S−1 Rm+(r) 2“z

2“z̄ m−(r)
Ss (2.6)

where ms=
2pd
S ls are rescaled fugacities (S is the area of a lattice site). Then

defining a new matrix K as

K=R 0 2“z
2“z̄ 0
S−1 Rm+(r) 0

0 m−(r)
S (2.7)

the grand partition function X can be expressed as

X=det(1+K) (2.8)

Thus, the calculation of the pressure p reduces to finding the eigenvalues
of K. While, on the other hand, the calculation of the one-particle densities
and correlations reduces to finding the Green functions G, satisfying the
following set of equations

R m+(r1) “x1
−i“y1

“x1
+i“y1 m−(r1)

S G(r1, r2)=d(r1− r2) 1 (2.9)

where

G=RG++ G+−
G−+ G−−
S (2.10)
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and 1 is the unit 2×2 matrix, since it can be shown that

rs1 (r1)=ms1Gs1s1 (r1, r1) (2.11a)

r (2) Ts1s2
(r1, r2)=−ms1ms2Gs1s2 (r1, r2) Gs2s1 (r2, r1) (2.11b)

When an external potential is acting differently on positive and negative
particles, it is convenient to define m(r) and V(r) as

ms(r)=m(r) exp[−2sV(r)] (2.12)

To symmetrize the problem for the two types of particles, it is useful to
define the following modified Green functions

gs1s2 (r1, r2)=e
−s1V(r1)Gs1s2 (r1, r2) e

−s2V(r2) (2.13)

Using the following operators

A=“x1+i“y1+“x1V(r1)+i“y1V(r1) (2.14a)

A†=−“x1+i“y1+“x1V(r1)− i“y1V(r1) (2.14b)

the equations for g++ and g−− decouple into

{m(r1)+A†[m(r1)]−1 A} g++(r1, r2)=d(r1− r2) (2.15a)

{m(r1)+A[m(r1)]−1 A†} g−−(r1, r2)=d(r1− r2) (2.15b)

The other Green functions are given by

g−+(r1, r2)=−[m(r1)]−1 Ag++(r1, r2) (2.16a)

g+− (r1, r2)=[m(r1)]−1 A†g−−(r1, r2) (2.16b)

We will apply the above method to the two models explained next.
Model I is a film of thicknessW=2L. The breadth of the film is in the

x-axis and the film is infinite in the y-axis. The origin is set in the middle
of the soap film. Remembering that ms 3 exp(−bUext(r)), in model I, the
position dependent fugacities are

m+(r)=m (2.17a)

m−(r)=m+a(d(x−L)+d(x+L)) (2.17b)

for r inside the film and m+(r)=m−(r)=0 outside the film. The parameter
a which we will call adhesivity measures the strength of the attractive
potential.
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Model II differs from model I in that the attractive potential acts over
a region of length d. For a real soap film, this thickness is approximately
the length of the hydrophobic tail. So for this model the position dependent
fugacities inside the film are

m+(x)=m (2.18a)

m−(x)=˛
mi if x ¥ [−L−d, −L[ 2 ]L, L+d]
m if x ¥ [−L, L]

(2.18b)

with mi=m exp(−bUext) > m since Uext is an attractive constant potential.
We can therefore distinguish three regions: the left border −L−d <
x < −L (region 1), the bulk of the film −L < x < L (region 2) and the
right border L < x < L+d (region 3). The length of the film in this model is
W=2L+2d. Outside the film the fugacities m+=m−=0.
In this case, the Eqs. (2.15) and (2.16) simplify to

[(m(x1))2−D] g± ± (r1, r2)=m(x1) d(r1− r2) (2.19a)

1
m(x1)

[−“x + i“y] g± ± (r1, r2)=g + ± (r1, r2) (2.19b)

where

m(x)=˛m0=(mmi)
1/2 if x in regions 1 or 3,

m if x in region 2
(2.20)

In this model, the potential defined in Eq. (2.12) is the following

exp(V)=˛ (
mi
m)

1
4 if x in regions 1 or 3,

1 if x in region 2
(2.21)

With this model we will study the case where mi Q. and dQ 0 while
keeping their product constant. This way model I is a limiting case of
model II.

3. THE PRESSURE

3.1. Formal Expression for the Grand Potential

We shall use here the first model presented in the above section (model I),
where the position-dependent fugacities are given by Eqs. (2.17). As
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explained in the preceding section the grand canonical partition function is
given by

X=det(1+K) (3.1)

To compute the grand potential we need to find the eigenvalues of K. The
eigenvalue problem for K with eigenvalues l and eigenvectors (k, q) reads

m−(r) q(r)=2l “z̄k(r) (3.2a)

m+(r) k(r)=2l “zq(r) (3.2b)

From Eqs. (3.2) and (2.17) we find that q is a continuous function while
k(x, y) is discontinuous at x=±L due to the Dirac delta distributions in
m−(r). The discontinuity of k is given by Eqs. (3.2a) and (2.17b)

k(x=±L+, y)−k(x=±L−, y)=
a

l
q(x=±L, y) (3.3)

Inside the film, for −L < x < L, Eqs. (3.2) can be combined into the
Laplacian eigenvalue problem

Dq=1m
l
22 q (3.4)

Due to the translational invariance in the y-direction we look for solutions
of the form

q(r)=(Ae−o
gx+Beo

gx) e iky (3.5)

where og=(k2+(m/l)2)1/2. From Eq. (3.2b) we find

k(r)=
l

m
(A(k−og) e−o

gx+B(og+k) eo
gx) e iky (3.6)

Outside the film Eqs. (3.2) reduce to

“z̄k=0 and “zq=0 (3.7)

That is k is analytic and q is antianalytic. Since we are looking for solu-
tions with y dependence e iky this gives

k(r)=Cekz=Cekx+iky (3.8a)

q(r)=De−kz̄=De−kx+iky (3.8b)
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In order to have vanishing solutions at infinity, from the preceding equa-
tions it is necessary that for k > 0

k(r)=0 for x > L (3.9a)

q(r)=0 for x [ −L (3.9b)

and for k < 0

k(r)=0 for x < −L (3.9c)

q(r)=0 for x \ L (3.9d)

Equations (3.3) and (3.9) are the boundary conditions that complete the
Laplacian eigenvalue problem (3.4). These boundary conditions yield a
homogeneous linear system for the coefficients A and B, which in the case
k > 0 reads

(A B)R (l
2(k−og)+am) e−o

gL eo
gL

(l2(og+k)+am) eo
gL e−o

gL
S=0 (3.10)

In order to have non trivial solutions the determinant of this linear system
must vanish. This gives the following equation that must be satisfied by the
eigenvalues l

(l2(og+k)+am) e2o
gL+(l2(og−k)−am) e−2o

gL=0 (3.11)

that can also be written as

cosh(2ogL)+1k+am
l2
2 sinh(2ogL)/og=0 (3.12)

A similar equation is found for the case k < 0 in which one should change
k for −k. As a consequence of this fact the set of solutions for k < 0 is the
same as for k > 0. From now on we will only consider the case k > 0.
The grand potential per unit length in the y-direction, w, is then given

by

bw=−
1
2p

F
+.

−.
lnD

lk

(1+lk) dk

=−
1
p
F
+.

0
lnD

lk

(1+lk) dk (3.13)
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where the product runs over all lk solution of Eq. (3.12). This product can
actually be performed as explained in refs. 8–10. Let us introduce the ana-
lytic function

fk(z)=cosh(2`k2+m2z2 L)+(k+amz2)
sinh(2`k2+m2z2 L)

`k2+m2z2
(3.14)

By construction the zeros of fk are the inverse of the eigenvalues lk. This
function fk can be factorized as a Weierstrass product running over its
zeros. Since fk(0)=exp(2kL), fŒ(0)=0, f(z)=f(−z) and the zeros of fk
are 1/lk, the Weierstrass product representation reduces to

fk(z)=exp(2kL)D
lk

(1−zlk) (3.15)

Then the product appearing in the grand potential (3.13) is simply
fk(−1) e−2kL. Finally, the grand potential per unit length reads

bw=−
1
p
F
.

0
dk 5−2kL+ln 1cosh(2oL)+k+am

o
sinh(2oL)26 (3.16)

where o=(k2+m2)1/2. The above integral is actually divergent and should
be cutoff to a kmax 4 1/R where R is the diameter of the particles as
explained in ref. 1. It can be checked that for a=0, Eq. (3.16) yields the
known grand potential for a two-component plasma in a strip of hard
walls. (8)

It is interesting to look at the large-W behavior of the grand potential,

w=−Wpb+2c+O(e−mW) (3.17)

whereW=2L is the width of the film, the bulk pressure is given by

bpb=
1
p
F
1/R

0
(o−k) dk

=
m2

2p
1 ln 2
mR
+12 (3.18)

(a known result from refs. 1 and 8, in the limit of vanishing cutoff RQ 0),
and the surface grand potential is

bc=−
1
2p

F
1/R

0
ln 51
2
11+k+ma

o
26 dk (3.19)
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In the limit RQ 0 the surface grand potential reads

bc=−
m
4p
5a ln 2

mR
+1−p+a+

1−a2

a
ln(a+1)6 (3.20)

When a=0 the above expression reduces to the known result (8, 11)

bc(a=0)=
m
2p
1p
2
−12 (3.21)

When the cutoff R vanishes the surface grand potential diverges (except for
a=0). This is expected since negative particles are strongly attracted to the
boundaries and for point particles this would create divergences in the
surface grand potential in addition to the usual divergences in the bulk
pressure due to the collapse of particles of opposite sign.
Finally it should be noted in Eq. (3.17) that there are no algebraic

corrections in 1/W to the grand potential. The next correction after the
surface term is exponentially small. This is the same situation as in a strip
with hard walls (a=0) but very different from the situation of ideal con-
ducting boundaries (8) and ideal dielectric boundaries. (12) In those later cases
there is indeed an algebraic universal finite-size correction to the grand
potential equal to p/24W.

3.2. The Disjoining Pressure

The pressure in the film can be obtained from the grand potential per
unit length w as p=−“w/“W. The disjoining pressure is defined as the
difference between the pressure of the film and the pressure of an infinite
system (WQ., the bulk pressure): pd=p−pb. (7) Using Eq. (3.16) for the
grand potential and Eq. (3.18) for the bulk pressure, we find

bpd=
1
p
F
.

0
g(k) dk (3.22a)

with

g(k)=
2o(−o+k+ma) e−2oW

o+k+ma+(o−k−ma) e−2oW
(3.22b)
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In the limitWQ 0, the total pressure is

bp(W=0)=
ma
pR

(3.23)

For W=0 and a ] 0, the pressure diverges as 1/R when the cutoff
vanishes, stronger than the usual logarithmic divergence. From this fact, it
is clear that for a ] 0 the disjoining pressure will be positive when WQ 0
(actually pd Q+. as WQ 0). The case a=0 is particular since then the
disjoining pressure is of same order as minus the bulk pressure for small-W
and then pd Q −. whenWQ 0.
For non-zero width films W ] 0 the disjoining pressure is finite for

vanishing cutoff RQ 0 (this limit has already been taken in Eq. (3.22)).
Figure 1 shows several plots of the disjoining pressure as a function of

the width W, for different values of a. We notice two different behaviors.
For a=1 and a=2, the pressure is a monotonous decaying function of the
width. This indicates that the film is stable for all widths. For a=0.3 and
a=0.5, we notice that the pressure is no longer a monotonous function of
the width. There exists a ‘‘critical’’ widthWc and forW>Wc the pressure is
an increasing function of the width. This indicates that the film is unstable
for W>Wc. Actually a very thick film WQ. is marginally stable and
would collapse to a film of thickness W0, where W0 is given by pd(W0)=0.
The region W>W0 corresponding to pd < 0 is not a physical region. This
is illustrated in Fig. 2. In the case a=0 the disjoining pressure is always
negative and increases if W increases. The film is unstable for all widths
when a=0.

Fig. 1. The disjoining pressure pd as a function of the widthW for several values of a. From
top to bottom a=2, 1, 0.5, 0.3, 0. Notice that the disjoining pressure becomes positive for
smallW except in the case a=0 where it is always negative.
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Fig. 2. The disjoining pressure pd as a function of the width W for a=0.3. The ‘‘critical’’
width Wc is defined by

“pd
“W (Wc)=0. The phenomenon of collapse is illustrated as follows.

A very thick film WQ. would collapse to a film of thickness W0, with disjoining pressure
pd(W0)=0. The region displayed in dashed line forW>W0 where pd < 0 is not physical.

The critical value of a distinguishing between these two different
behaviors is ac=1 as it will be shown below. In order to determine if the
pressure is an increasing or decreasing function of W we study the sign of
“pd/“W and in particular the sign of “g(k)/“W. We have

“g(k)
“W
=

mo2[m(1−a2)−2ak] e−2oW

[o+k+ma+(o−k−ma) e−2oW]2
(3.24)

Clearly for a \ 1 the function “g(k)/“W is negative for all values of k > 0,
and consequently the disjoining pressure will be a decreasing function
ofW.
For a < 1 the function “g(k)/“W is positive for values of k < kg=

m(1−a2)/2a and negative for values of k > kg. Since for large values ofW,
the function “g(k)/“W decays exponentially, the dominant part of the
integral in

“bpd
“W
=
1
p
F
.

0

“g(k)
“W

dk (3.25)

will be given by small values of k, where “g(k)/“W is positive. Then, for
large values of W, “pd/“W will be positive and pd will be an increasing
function ofW for largeW.
The exact value of Wc where “pd/“W changes of sign cannot be

determined analytically in a simple manner. However, it can be determined
numerically. In Fig. 3 we plotWc as a function of the parameter a.
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Fig. 3. The ‘‘critical’’ widthWc of the films as a function of the adhesivity a.

As a general conclusion of this analysis it can be said that the attrac-
tive potential in the boundary of the film, whose strength is characterized
by a, allows the film to stabilize. For a > 1, films of arbitrary width are
stable, whereas for a < 1 only thin films are stable, thick films will collapse,
mimicking the collapse to a Common Black Film or to a Newton Black
Film in real soap films.
This situation is somehow different to the one exposed in ref. 7 for a

one-dimensional film. Common features of the present study and the one-
dimensional case are that for sufficient large values of the adhesivity a a
stable film region exists. For small values of a (a < 1 in our case) a collapse
can occur. But the main difference is that for a < 1 very thick two-dimen-
sional films are unstable while very thick one-dimensional films are always
stable for a > 0. Another important difference is that in the one-dimen-
sional case multiple collapses are possible whereas in the two-dimensional
case we only have one collapse (or no collapse).

4. DENSITY AND CORRELATIONS

The density and correlations can be obtained by computing the Green
functions introduced in Section 2. The present section is divided into two
parts. First, we will study the density and correlations inside the film using
model I. In the second part, we will compute the density in the boundary of
the film and the correlations when one point is on the boundary of the film.
For that part we will need to use model II since the Green functions of
model I are discontinuous on the boundary as we will see below and there-
fore do not give any information about the boundary.
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4.1. Inside the Film

4.1.1. The Green Functions

In the present geometry it is natural to work with the Fourier trans-
form ĜssŒ of GssŒ in the y-direction

GssŒ(r1, r2)=F
.

−.
ĜssŒ(x1, x2, k) e

ik(y1 −y2)
dk
2p

(4.1)

Then Eq. (2.9) translates in Fourier space to

Rm+(x1) “x1
+k

“x1
−k m−(x1)

S Ĝ(x1, x2, k)=d(x1−x2) 1 (4.2)

Let us detail the calculation of G−− and G+− , the one for G++ and G−+
follows similar steps. The equations are

mĜ+−+(“x1+k) Ĝ−−=0 (4.3a)

(“x1 −k) Ĝ+−+m−(x1) Ĝ−−=d(x1−x2) (4.3b)

From Eq. (4.3a) we deduce that Ĝ−− is continuous. However because of the
Dirac delta distributions in the definition of m− the function Ĝ+− will be
discontinuous at x1=±L. From Eq. (4.3b) we deduce the discontinuity of
Ĝ+− at x1=±L if x2 ] x1

Ĝ+− (x1=±L−)−Ĝ+− (x1=±L+)=aĜ−−(x1=±L) (4.4)

If both points r1 and r2 are inside the film but not on the boundary both
fugacities are equal m+=m−=m and then Eqs. (4.3) can be combined into

(“2x1 −o
2) Ĝ−−(x1, x2)=−md(x1−x2) (4.5)

with o=(k2+m2)1/2, while Ĝ+− is given by Eq. (4.3a).
If r1 is outside the film while r2 is fixed inside the film, then

m+(x1)=m−(x1)=0 and the solution of Eqs. (4.3) is

Ĝ−−(x1, x2, k)=Ce−kx1 (4.6a)

Ĝ+− (x1, x2, k)=Dekx1 (4.6b)

In order to have finite solutions at x1=±. it is necessary that for k > 0

Ĝ−−(x1 [ −L)=0 and Ĝ+− (x1 > L)=0 (4.7a)
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and for k < 0

Ĝ−−(x1 \ L)=0 and Ĝ+− (x1 < −L)=0 (4.7b)

Equations (4.4) and (4.7) are the boundary conditions that complement the
differential equations (4.3) for the Green functions.
The solution is of the form

Ĝ−−(x1, x2)=
m
2o
[e−o |x1 −x2|+Ae−ox1+Beox2] (4.8)

where the coefficients A and B are determined by the boundary conditions.
Finally the Green function G−− is, for k > 0,

Ĝ−−(x1, x2, k)

=
m
2o
5e−o |x1 −x2|+−(k+o+am) e

−o(x1+x2)+(o−k−am) eo(x1+x2)

(o−k−am) e−oW+(k+o+am) eoW

+
2(−o+k+am) e−oW cosh o(x1−x2)
(o−k−am) e−oW+(k+o+am) eoW

6 (4.9a)

and for k < 0,

Ĝ−−(x1, x2, k)

=
m
2o
5e−o |x1 −x2|+(o+k−am) e

−o(x1+x2)+(−o+k−am) eo(x1+x2)

(o+k−am) e−oW+(o−k+am) eoW

+
2(−o−k+am) e−oW cosh o(x1−x2)
(o+k−am) e−oW+(o−k+am) eoW

6 (4.9b)

and Ĝ+− can be obtained from Eq. (4.3a). Similar calculations lead to Ĝ++
for k > 0,

Ĝ++(x1, x2, k)

=
m
2o
5e−o |x1 −x2|+−(o+k)(1−a

o+k
m ) e

o(x1+x2)+(o−k)(1+a o−km ) e
−o(x1+x2)

(o−k−am) e−oW+(o+k+am) eoW

+
2(k−o+am) e−oW cosh o(x1−x2)
(o−k−am) e−oW+(o+k+am) eoW

6 (4.10a)
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while for k < 0,

Ĝ++(x1, x2, k)

=
m
2o
5e−o |x1 −x2|+(o+k)(1+a

o+k
m ) e

o(x1+x2)−(o−k)(1−a o−km ) e
−o(x1+x2)

(o+k−am) e−oW+(o−k+am) eoW

+
2(−k−o+am) e−oW cosh o(x1−x2)
(o+k−am) e−oW+(o−k+am) eoW

6 (4.10b)

The Green function Ĝ−+ is obtained from

Ĝ−+(x1, x2)=−
1
m
(“x1 −k) Ĝ++(x1, x2) (4.11)

We omit the details of the calculation for Ĝ++. Let us only note that in this
case, Ĝ+− is continuous while Ĝ++ is discontinuous at x1=±L with

Ĝ++(x1=±L−)−Ĝ++(x1=±L+)=aĜ+− (x1=±L) (4.12)

The Green functions G(r1, r2) in position space are given by the
Fourier transform formula (4.1). The term m exp(−o |x1−x2 |)/(2o) that
appears in all Ĝss give the bulk contribution to Gss, (1)

Gbulk=
m
2p
K0(m |r1− r2 |) (4.13)

where K0 is the modified Bessel function of the second kind of order 0.
For a=0 the expressions for the Green functions reduce to known

results. (13)

4.1.2. The Density

The density of species of charge s is given by

rs(r)=ms(r) Gss(r, r) (4.14)

Using Eqs. (4.9) and (4.10) for the Green functions we obtain the densities

r−(x)=rb+
m2

p
F
.

0

(k−o+am) e−oW−(k+am) cosh(2ox)
(o−k−am) e−oW+(o+k+am) eoW

dk
o

(4.15a)

r+(x)=rb+
m2

p
F
.

0

(k−o+am) e−oW−(k−am− 2ak
2

m ) cosh(2ox)
(o−k−am) e−oW+(o+k+am) eoW

dk
o

(4.15b)
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where rb is the bulk density (actually divergent when the cutoff RQ 0). The
charge density r=r+−r− (measured in units of q) is then

r(x)=
2ma
p

F
.

0

oe−oW cosh(2ox) dk
o+k+am+(o−k−am) e−2oW

(4.16)

Figure 4 shows several plots of the charge density as a function of the
position x. This figure can be understood as follows. Because of the strong
attractive potential on the boundary an important part of the negative
particles (the soap molecules) are stuck in the borders of the film at x=±L
creating a layer of negative surface charge density (actually it is really a
linear charge density since our system is two-dimensional, in a three-
dimensional case it would be a real surface charge density). In the frame-
work of model I, this negative surface charge density cannot be seen in
Fig. 4 nor in the analytic expressions found for the densities, but it will be
studied in detail in the second part of this section (Section 4.2) when we
will work with model II.
The system on the interior of the film is then non-neutral with an

excess positive charge. This excess positive charge screens the negative
surface charge density at the borders as it can be seen on Fig. 4. The
density near the boundary is positive and becomes very large when the
boundary is approached. Away from the borders, near the middle of the
film, the system is almost neutral. Also in Fig. 4 and from the analytic
expression (4.16) for the density it can be checked that the screening length
is of order m−1, a well-known result. (1) It should be noted that for a=0.3
and a=0.5 the system should collapse according to the analysis of the
preceding section (Section 3). However there is no hint on the charge
density profiles indicating the collapse. This was also the case on the one-
dimensional model. (7)

Fig. 4. The charge density as a function of the position x for several values of a. The width
of the film isW=8/m. From top to bottom a=2, 1, 0.5, 0.3.
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The surface charge on one border −s can be computed by using the
screening sum rule

s=F
L

0
r(x) dx (4.17)

giving

s=
am
2p

F
.

0

(1−e−2oW) dk
o+k+am+(o−k−am) e−2oW

(4.18)

Actually the above expression is divergent and should be cutoff to a
kmax 4 1/R as it has been done for the pressure. In Section 4.2 a more
direct calculation of s will be done and the validity of the screening sum
rule will be proven.
The surface charge density s is an increasing function of W. Actually

for thick films it converges exponentially fast to the value

sb=
am
2p

F
1/R

0

1
o+k+am

dk

=
m
4p
5a ln 2

mR
−
a2+1
a
ln(a+1)+16 (4.19)

The vanishing terms when RQ 0 have been omitted in the second equality.
The dominant term of sb, when the cutoff vanishes, is proportional to a. It
is clear that a controls how much the boundaries get charged.
For very thick films WQ., it is interesting to study the relationship

between the surface charge density sb and the surface tension. Actually the
surface grand potential c computed in Section 3 is really the surface tension
of the system since we are dealing with polarizable interfaces. (1, 14) This
is clear in model II (model I being a special limit of model II) where the
particles are free to go from region −L < x < L to the boundary regions
−L−d < x < −L and L < x < L+d. In that model the control parameter
for charging the boundaries is the attractive potential Uext, or equivalently
the fugacity mi. For model I the control parameter is the adhesivity a.
From the formal expressions of c and sb given by Eqs. (3.19) and (4.19) it
can be verified that

sb=−ba
“c

“a
(4.20)
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which can be regarded as a particular form of Lippmann equation for this
model. (1)

4.1.3. The Correlations

The truncated two-body correlation function for a particle of sign s at
r1 and a particle of sign sŒ at r2 is given in terms of the Green functions by

r (2) TssŒ (r1, r2)=−ms(r1) msŒ(r2) GssŒ(r1, r2) GsŒs(r2, r1) (4.21)

With the expressions for the Green functions given by Eqs. (4.9) and (4.10)
the correlation functions can be obtained.
Due to the screening properties the structure near a boundary will not

be modified considerably by the presence of the other boundary. For this
reason it is interesting to study in further detail the case of thick films
WQ.. The corrections for finite films are exponentially small in mW.
For WQ., taking the origin at the boundary (x is now changed to

x+L), the Fourier transforms of the Green functions simplify, for k > 0, to

Ĝ−−(x1, x2)=Ĝbulk−
m
2o
e−o(x1+x2) (4.22a)

Ĝ++(x1, x2)=Ĝbulk+
m
2o
(o−k)[1+a

m (o−k)]
o+k+am

e−o(x1+x2) (4.22b)

and for k < 0

Ĝ−−(x1, x2)=Ĝbulk+
m
2o
o+k−am
o−k+am

e−o(x1+x2) (4.22c)

Ĝ++(x1, x2)=Ĝbulk+
m
2o
(k−o)[1− am (o−k)]

o−k+am
e−o(x1+x2) (4.22d)

As a very curious fact it should be noted that the preceding expressions for
Ĝ−− are formally identical with the ones of ref. 1 for a two-component
plasma near a charged hard wall if one chooses in the later case the exter-
nal surface charge density of the wall to be equal to −am/(2p). This does
not mean that in our case the charge density (which is actually not external
to the system, but internal and due to the reorganization of charges in the
film) is −am/(2p). In the preceding subsection we have computed the
surface charge density −s and we know that it is not equal to −am/(2p).
Furthermore for the Green functions Ĝ++ this comparison does not hold,
the expression for Ĝ++ given by Eqs. (4.22) and those from ref. 1 are very
different.
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It is clear from Eqs. (4.22) that the correlation functions will decay
exponentially fast in the x-direction (through the width of the film).
However it is well known that in the y-direction, parallel to the boundary,
the correlation functions usually decay algebraically. (15–17) For two-dimen-
sional Coulomb systems, near a hard or dielectric (non-conducting) wall,
they should decay as y−2. For a hard wall (a=0) the total charge correlation
function S(r1, r2)=r

(2) T
++ (r1, r2)+r

(2) T
−− (r1, r2) − r

(2) T
−+ (r1, r2) − r

(2) T
+− (r1, r2)

should behave, for y=y1−y2 Q., as (15–17)

S(r1, r2) 4
f(x1, x2)
|y|2

(4.23)

and the function f(x1, x2) should obey the sum rule

F
.

0
dx2 F

.

0
dx1 f(x1, x2)=−

1
2p2b

(4.24)

The preceding asymptotic behavior is very general for a Coulomb system
near a plane hard wall.
Returning to our case, the Fourier transform of the Green functions

have a discontinuity at k=0 which will translate in position space into a
decay as 1/y for large y, then the correlation functions will indeed have
a decay as 1/y2. More precisely, the large-y behavior of the charge cor-
relation function is found to be S(r1, r2) 4 f(x1, x2)/y2 with the function
f(x1, x2) given by

f(x1, x2)=−
m2e−2m(x1+x2)

(a+1)2p2
(4.25)

This function obeys the sum rule

F
.

0
dx2 F

.

0
dx1 f(x1, x2)=−

1
2p2b(a+1)2

(4.26)

According to refs. 15–17 for a Coulomb system near a plane hard wall with
an external charge density on the wall the sum rule (4.24) is not modified.
In our case, where the boundary is charged by a fraction of the particles of
the system, the sum rule is modified. However in the sum rule (4.26) we
only accounted for the correlations of particles in the fluid. As we will see
in Section 4.2 there are also correlations for particles that are absorbed in
the boundary and when these are taken into account the sum rule (4.24) is
verified.
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It is also interesting to comment on the case aQ.. It can be checked
that in that limit Eqs. (4.22) reduce to

Ĝ−−(x1, x2)=Ĝbulk−
m
2o
e−o(x1+x2) (4.27a)

Ĝ++(x1, x2)=Ĝbulk+
(o−k)2

2mo
e−o(x1+x2) (4.27b)

for all values of k. Computing the inverse Fourier transforms gives

G−−(r1, r2)=
m
2p
[K0(mr12)−K0(mr

g
12)] (4.27c)

G++(r1, r2)=
m
2p
K0(r12)+

m
2p
e−if

g
12K2(mr

g
12) (4.27d)

where r12=|r1− r2 | and r
g
12=|r1− rg

2 | with rg
2=(−x2, y2) being the image

of r2. The angle f
g
12 is the angle of the vector r1− rg

2 with respect to the
x-axis.
It is clear that, when aQ., the Green functions have no longer an

algebraic decay along the y-direction. The decay is now exponential in all
directions and of the form exp(−mr12) and exp(−mr

g
12).

4.2. On the Boundary of the Film

We are now interested in the structure of the film at the boundary.
Model I cannot give directly any information on the density or the corre-
lations at the boundary since some of the Green functions are discontinu-
ous there. We shall use instead model II where the fugacities are given by

m−(x)=˛
mi if x ¥ [−L−d, −L[ 2 ] L, L+d],
m if x ¥ [−L, L]

(4.28)

and m+(x)=m everywhere inside the film. Recall that we distinguish
between three different regions: the left border −L−d < x < −L (region 1),
the bulk of the film −L < x < L (region 2) and the right border L < x <
L+d (region 3).

4.2.1. The Green Functions

It is useful to work with the modified Green functions as explained in
Section 2. As before we will concentrate on the computation of g−− , the
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one for g++ follows the same lines. We fix the source point r2 in region 1.
Then, the Green function obeys Helmoltz equation in the different regions

(Dr1
−m(x1)2) g−−(r1, r2)=−m(x1) d(r1− r2) (4.29)

and

g+− (r1, r2)=
1
m(x1)

(−“x1+i“y1 ) g−−(r1, r2) (4.30)

with the position dependent fugacity

m(x)=˛m0=(mmi)
1/2 if x in regions 1 or 3,

m if x in region 2
(4.31)

Working with the Fourier transforms ĝssŒ of gssŒ we have, if r1 is in region 1,

ĝ−−(x1, x2)=
m0
o0
e−o0 |x1 −x2|+A1e−o0x1+B1eo0x1 (4.32a)

if r1 is in region 2,

ĝ−−(x1, x2)=A2e−ox1+B2eox1 (4.32b)

and if r1 is in region 3,

ĝ−−(x1, x2)=A3e−o0x1+B3eo0x1 (4.32c)

with o0=(m
2
0+k

2)1/2. The coefficients Ai and Bi are determined by the
following boundary conditions: ĜssŒ should be continuous at x1=±L and
at x1=±(L+d). Furthermore, for k > 0, Ĝ−−=0 if x1 [ −L−d and
Ĝ+−=0 if x1 \ L+d. And for k < 0, Ĝ−−=0 if x1 \ L+d and Ĝ+−=0 if
x1 [ −L−d. These boundary conditions yield a linear system of six equa-
tions for the coefficients Ai and Bi for each case k > 0 and k < 0. This
system can be solved by standard matrix manipulation programs like
Mathematica. Since the solution is actually not very illuminating and too
long to reproduce here we will only consider from now on the limit
mi Q., dQ 0 while mid=a is kept constant. This limit is taken after the
linear system has been solved. In this limit model II reduces to model I.
In the limiting procedure it is very important to observe how the

Green functions scale with the fugacity mi. We find that g−− is proportio-
nal to m1/2i when r1 is in region 1. Then the density will be proportional to
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mi and diverges in the limit mi Q.. However the ‘‘surface’’ charge density
s−=r−d will have a finite value. Similar scaling behaviors appear in the
other regions, giving finite surface charge density-surface charge density
Os−(r1) s−(r2)P correlations for both points in boundary region 1, and
finite charge density-surface charge density Ors(r1) s−(r2)P for r1 in region
2 and r2 in region 1, as it should be.
On the other hand the function ĝ++ for instance is of order 1/m

1/2
i

when r1 and r2 are in region 1. This will give a finite charge density r+ in
the boundary but no surface charge density s+=0. Only the negative
surface charge density s− contributes to the total surface charge density:
s=s− . The same holds for correlations when r1 is in region 2 and r2
in region 1, we find a finite charge density-charge density correlations
Ors(r1) r+(r2)P but not a charge density-surface charge density correlation
Ors(r1) s+(r2)P=0. Again the only contibution to the total charge density-
surface charge density correlation comes from Ors(r1) s−(r2)P.
This is not surprising. We know from the preceding section that the

strong attractive potential has created a negative surface charge density at
the boundaries.
In the limit mi Q., dQ 0 and mid=a constant, the results for the

relevant Green functions are, for r1 in region 1 and k < 0 (withW=2L)

ĝ−−=
m0(1−e−2oW)

o−k+am+(o+k−am) e−2oW
(4.33)

while for k > 0, ĝ−−=O(m
−1
0 ). All other Green functions in this region are

of order O(m−10 ).
For r1 in region 2 we find, for k < 0,

ĝ−−(x1)=
2(m0m)1/2 e−oW sinh o(L−x1)
o−k−am+(o+k−am) e−2oW

(4.34a)

and

ĝ+− (x1)=5
m0
m
61/2×e

−o(L+x1)[o−k+(o+k) e−2o(L−x1)]
o−k+am+(o+k−am) e−2oW

(4.34b)

while for k > 0 the Green functions ĝ−− and ĝ+− are of order O(m
−1/2
0 ).

Also the other Green functions ĝ++ and ĝ−+ are of order O(m
−1/2
0 ).

When r1 is in the other boundary (region 3) we found that all Green
functions are of order O(m−10 ).
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4.2.2. The Density

We now compute the density on the boundary. Using Eq. (4.33) for
the Green function g−− and the formula

rs(r)=m0 gss(r, r) (4.35)

we find a charge density r− proportional to mi. Then the surface charge
density s−=dr− is finite in the limit mi Q., dQ 0 and mid=a fixed. We
have

s−=
am
2p

F
0

−.

(1−e−2oW) dk
o−k+am+(o+k−am) e−2oW

(4.36)

Making a change of variable kQ −k in the integral we find that the
surface charge density s− is equal to the one computed in Section 4.1 using
the screening sum rule (4.17), s−=s, as it should be. The screening sum
rule (4.17) is then verified.

4.2.3. The Correlations

For both points r1 and r2 on the boundary (region 1) we compute the
charge density correlation function by using

r (2) T−− (r1, r2)=−m
2
0 |g−−(r1, r2)|

2 (4.37)

The Green function g−− given by the Fourier transform of Eq. (4.33) is
proportional to m0=`mmi. Then, the charge density correlation function
is proportional to m2i . This gives a well defined surface charge density-
surface charge density correlation function

Os−(y1) s−(y2)PT=d2r
(2) T
−− (r1, r2) (4.38)

in the limit mi Q., dQ 0 and mid=a fixed. The final expression for the
correlation function is

Os−(y1) s−(y2)PT=−5
ma
2p
62× :F.

0

(1−e−2oW) e iky dk
o+k+am+(o−k−ma) e−2oW

:2

(4.39)

with y=y1−y2. As before it is interesting to study the decay of the corre-
lations along the y-axis. The discontinuity of the Fourier transform of the

Solvable Model for Electrolytic Soap Films 519



Green function at k=0 will be translated into a 1/y decay. Then the
surface charge correlation will have the asymptotic behavior

Os−(y1) s−(y2)PT 4 −
a2

4p2
(1−e−2mW)2

(1+a+(1−a) e−2mW)2
1
y2

(4.40)

and for very thick filmsWQ.

Os−(y1) s−(y2)PT 4 −
a2

4p2(a+1)2
1
y2

(4.41)

In relation to the results of Section 4.1 on the asymptotic behavior of the
total charge correlation function S(r1, r2) inside the film we notice that for
yQ. and in the limitWQ. the following sum rule is verified

Os−(y1) s−(y2)PT=a2 F
.

0
dx2 F

.

0
dx1 S(r1, r2) (4.42)

When r1 is in region 2 (inside the film) and r2 remains on the bound-
ary, the correlation function r (2) T−− is given by

r (2) T−− (r1, r2)=−m0m |g−−(r1, r2)|
2 (4.43)

with the Green function g−− given by the inverse Fourier transform of
Eq. (4.34a). The correlation function r (2) T+− is given by

r (2) T+− (r1, r2)=m0m |g+− (r1, r2)|
2 (4.44)

with g+− given by the inverse Fourier transform of Eq. (4.34b). We notice
that both correlation functions are proportional to m20=mim. Then the
charge density-surface charge density correlation Ors(r1) s−(y2)PT=
dr (2) Ts− (r1, r2) will have a well defined finite limit when mi Q., dQ 0 and
mid=a.
We find

Or−(r1) s−(y2)PT=−
am3

p2
× :F.

0

e−oW sinh[o(L−x1)] e iky dk
o+k+am+(o−k−am) e−2oW

: 2 (4.45)

and

Or+(r1) s−(y2)PT=
am
4p2
× :F.

0

e−o(L+x1)[o+k+(o−k) e−2o(L−x1)]
o+k+am+(o−k−am) e−2oW

dk :
2

(4.46)
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It is interesting to notice a relation between Or−(r1) s−(y2)PT and the
surface charge density correlation when both points are at the border,
which we might call ‘‘continuity.’’ This relation is

Or−(x1=−L, y1) s−(y2)PT=
m
a
Os−(y1) s−(y2)PT (4.47)

It is also important to study the decay of the correlations along the
boundary, when |y|=|y1−y2 |Q.. Here again the discontinuity of the
Fourier transform of the Green functions at k=0 is responsible for a 1/y2

decay of the correlations. The asymptotic behavior of the correlations for
|y1−y2 |Q. is

Or−(r1) s−(y2)PT 4 −
am[sinh m(L−x1)]2

[1+a+(1−a) e−2mW]2
e−2mW

p2y2
(4.48)

and

Or+(r1) s−(y2)PT 4
am[cosh m(L−x1)]2

[1+a+(1−a) e−2mW]2
e−2mW

p2y2
(4.49)

For very thick films WQ., taking now the origin at the boundary
x1 Q x1+L, the total structure function OrsPT=Or−s−P

T−Or+s−PT has
the asymptotic behavior

Or(r1) s(y2)PT 4 −
ame−2mx1

2p2(a+1)2 y2
(4.50)

We notice that this asymptotic correlation function obeys a sum rule with
the charge correlation function S(r1, r2) for both points inside the fluid

F
.

0
S(r1, r2) dx2=aOr(r1) s(y2)PT (4.51)

and also a sum rule with the surface charge density correlation when both
points are on the boundary

F
.

0
Or(r1) s(y2)PT dx1=aOs(y1) s(y2)PT (4.52)

The remaining case to complete this study is when the two points are
on opposite boundaries, for instance r2 in region 1 and r1 in region 3. In
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this case we found that all Green functions are of order O(m−10 ). Then, the
correlation functions given by

r (2) TssŒ (r1, r2)=m
2
0gssŒ(r1, r2) gsŒs(r2, r1) (4.53)

will be finite of order O(1). But since there exists a surface charge density
at the boundaries, the interesting quantity here is the surface charge corre-
lation function OssssŒP

T=d2r (2) TssŒ which will vanish in the limit dQ 0. We
have the interesting result: the surface charge densities at opposite bound-
aries are completely uncorrelated.
To conclude this section let us return to the sum rule (4.24) for the

correlations functions along the boundary for WQ.. If one takes into
account all contributions (both particles in the fluid, one particle in the
boundary and one in the fluid and both particles in the boundary) to the
charge density correlation function, this function should read

Stotal(r1, r2)=S(r1, r2) (4.54a)

+d(x1)Os(x1) r(r2)PT (4.54b)

+d(x2)Os(x2) r(r1)PT (4.54c)

+d(x1) d(x2)Os(x1) s(x2)PT (4.54d)

where the structure function S(r1, r2) in Eq. (4.54a) contains only the con-
tributions for particles in the fluid, the correlations OrsPT in Eqs. (4.54b)
and (4.54c) contain the contribution when one point is on the boundary
and the other in the film, and finally the correlation OssPT contains the
contribution when both particles are on the boundary. The origin is taken
on the boundary. Using the asymptotic expressions for the different corre-
lations given by Eqs. (4.25), (4.50) and (4.41) one can check that the sum
rule (4.24) is verified:

F
.

0
dx1 F

.

0
dx2 Stotal(r1, r2)=−

1
4p2y2

1+2a+a2

(a+1)2

=−
1
4p2y2

(4.55)

For finite W there exists also a sum rule similar to Eq. (4.24) for
conducting Coulomb systems. (17, 18) This sum rule reads

F
L

−L
dx2 F

L

−L
dx1 Stotal(r1, r2)=−

1
bp2y2

(4.56)

522 Téllez and Merchán



for |y|Q.. From Eqs. (4.9) and (4.10) one can compute the asymptotic
behavior of the correlations for both points in the fluid. We find

S(r1, r2) 4 −
m2

2p2y2
cosh[2m(x1+x2)]

[cosh(mW)+a sinh(mW)]2
(4.57)

Taking into account all contributions from Eqs. (4.40), (4.48) and (4.49) to
the total charge correlation function one finds

F
L

−L
F
L

−L
Stotal(r1, r2) dx1 dx2

=−
1
2p2y2

×
sinh2 mW+2a cosh mW sinh mW+a2 sinh mW

[cosh mW+a sinh mW]2

=−
1
2p2y2
51− 1

[cosh mW+a sinh mW]2
6 (4.58)

The sum rule (4.56) is not verified. The discrepancy however is exponen-
tially small whenWQ.. This situation also occurs in the case a=0 which
was studied in ref. 13. The two-component plasma is no longer in its con-
ducting phase at C=2 when confined in a slab. This is a special property
of the two-component plasma at it is not related to the short-range attrac-
tive potential near the boundaries. For this reason the sum rule (4.56) is no
longer valid. Actually for a Coulomb system in a dielectric phase, the r.h.s.
of the sum rule (4.56) should read (−1/bp2y2)(1− E−1) with E the effective
static dielectric constant of the system. Then, in our case the system has a
effective dielectric constant given by

E=(cosh mW+a sinh mW)2 (4.59)

This phenomenon is particular to the two-dimensional two-component
plasma and probably should not apply to real three-dimensional soap
films.

5. CONCLUSION

We have studied a toy model for electrolytic soap films. Although this
model is very simple and gives only qualitative information for real soap
films it is very interesting since it is a solvable model. Our study of the
disjoining pressure shows that the charging of the boundaries is responsible
of the stability of the film. For strong adhesivity a > 1 the film is stable
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while for weak adhesivity a < 1 thick films are not stable. For 0 < a < 1
thick films collapse to non-zero width thin films. This could be the equiva-
lent of a collapse to a Common Black Films for our two-dimensional
model. For a=0 unstable thick films collapse to a film of zero width which
could be the equivalent of a Newton Black Film. We can conclude that the
Coulomb interaction plays indeed an important role in the stability of thick
films. This is also the case in the one-dimensional model presented in ref. 7.
Then it is natural to expect that for real three dimensional films the
Coulomb interaction also plays an important role in their stability. Of
course in real films there are other important interactions that certainly
play a role in the stability of the film and in particular in the stability and
structure of black films (both Common Black Films and Newton Black
Films) that have not been taken into account in our simplified model.
We also studied the density profiles and correlation functions for this

two-dimensional model. The density profile near a boundary shows a clas-
sical double layered structure. A fraction of the anions (soap molecules) are
stuck on the boundary creating a first layer of negative surface charge
density. The ions in the fluid create the second layer of positive charge and
thickness given by the screening length which screens the first layer.
The correlation functions exhibit the usual behavior. In the x-direction

across the film they decay exponentially with the characteristic screening
length. In the y-direction parallel to the boundary they decay algebraically
as 1/y2. The total charge correlation function (taking into account all con-
tributions of particles in the fluid and in the boundary) obeys the usual
sum rule for Coulomb fluids near a plane wall when WQ.. For W finite,
the two-component plasma at C=2 is no longer a conductor and therefore
fails to satisfy a sum rule for correlations along the boundaries. We also
found an interesting new fact: the surface charge densities on opposite
boundaries are completely uncorrelated.
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